您的浏览器版本已过时。我们建议您更新浏览器到最新版本。

加拿大Tallysman天线系列

发表 2017/02/08

《GNSS天线性能比较》

背景

天线和GPS接收机中的LNA元件对接收机最终可用灵敏度至关重要。在没有暗室和专用设备的情况下,很难对每个天线进行绝对测量,但是有一种简单的方法来进行比较评估。 C/No是绝对指标,主要是天线加前端性能。 C/No1Hz带宽中载波功率与混合信号的噪声功率的比率。该比率定义了GPS接收机的灵敏度限制。无任什么原因C/No降低带宽限制或LNA噪声数值增加GNSS灵敏度将相应减少。一旦受,没有办法恢复C/No。即使额外增益也不管用,因为CNo同样放大,因此不起作用 C/No测试就像天线+前端LNA性能药物测试忽悠!比较天线性能(势评判)的简单方法是比较标准NMEA $ GPGSV导航电文中特定卫星的C/No值。该导航电文报告每个可卫星C/No值,接收机解调器解算。大多数GNSS芯片制造商提供PC实用程序来示每个被跟踪卫星的C/No值,通常以条形图表示。这通常需要实用程序用$ GPGSV NMEA命令输出信息

 

测试方法

一般来说是在单个接收机上简单地安装要进行比较的天线,并且比较最佳两个或三个卫星的C / No的报告值。卫星星座在几分钟的过程中改变,报告值将由于星座变化而变化,并且由于天线不同而不同。重要的是:a报告值与特定卫星相关,b序列快速,以及c重复测量几次。最简单的情况是GPS L1。由于GPS L1信号相对较窄,天线评估简为几个最佳GPS卫星C/No平均值的比较。对于多星座/多频天线,情况稍微复杂一些,因为测量必须包括多卫星星座和多信号。这可以通过眼球观察C/No的条形图值来完成,但更好的方法是使用记录终端软件捕获NMEA输出。

GNSS接收机和要评估的天线应当布置成:a测试天线必须清楚地看到整个天空,具有相对低的天际线b​​接收机被设置为输出NMEA $ GPGSV导航电文(GLONASS$ GLGSVGalileo$ GAGSVBeiDou$ GBGSVc接收机的串口连接到运行C/No条形图实用程序的计算机(用于目视检查)或具有日志记录的终端实用程序(Hypertermd每个天线放置在近相同的接地平面(100mm,圆形或正方形是理想的)上,e被测天线彼此相隔要小于0.5米(以确保没有耦合),以及f可能在接收机处非常快速地切换天线。
 
该方法是将按理想顺序连接每天线不超过30秒,并在该时间期间记录NMEA数据流。天线更换应该光滑,以便接收机快速重新获取。终端实用程序可以快速记录NMEA输出数据。每NMEA $ GxGSV导航电文报告天线最多4可视卫星的C/No视图(参见下面关于NMEA语句信息范例)。最佳报告参数高于48dB的特定卫星的值。具有低C/No值的卫星不能用于比较,因为低信号电平掩盖天线性能。快速重复测量有助于克服报告值的变异性并适应卫星星座的连续变化。记录数据方便以后进行文字整理工作。

 

NMEA $ GPGSV导航电文格式
$ GPGSV导航电文提供关于跟踪卫星的详细信息表單的頂端


$ GPGSV,x,x,xx,xx,xx,xxx,xx,................xx,xx,xxx,xx * hh
GS =可视SV(卫星)数,PRN号,仰角,方位角和SNR值。

$ GPGSV,3,1,11,03,12,174,,06,20,159,13,14,315,14,02,139,* 7C
1 =此周期中此类型的电文总数

2 =电文数

3 =可视SV(卫星)总数

4 =(第一颗)卫星PRN号

5 =以度为单位的仰角,最大值为90°

6 =与真北的方位角,000°到359°,

7 = SNR(信噪比),00-99 dB(不跟踪时为零)

8-11 =第二颗SV(卫星)的信息,与字段4-7相同,

12-15 =第三颗SV(卫星)的信息,与字段4-7相同,

16-19 =有关第四颗SV(卫星)的信息,与字段4-7相同

20 =校验和

 

结果解读

对于多星座接收机,C/NoGLONASSGalileoBeiDou具有与GPS L1卫星相同的意义,并且应当将比较GPS-L1GPS-L1GLONASSGLONASSGalileoGalileo,和北斗北斗特定卫星。更好的C/No值减少GNSS星、更好的捕获和更好的整体准确度,因为GNSS水平精度(HDOP值变小了以下给出一些预期值,54dB是惊人的,53dB是优秀的,52dB是好的,49/50dB是“(不理想)可接受的”。这些数值的小差异;3dB天线一半。罕有,但是可能遇到报告的所有C/No值都低于48dB的情况,在这种情况下,等待一个小时左右星座改变可能更好。启动时捕获GNSS信号在-143dBm区域,由于信号易受破坏性干扰和树冠衰减等因素的影响,卫星C/No值相对容易下降到捕获阈值以下,因此天线越好,这种情形越少发生,当然,更好的GNSS接收机将跟踪低电平信号。 在消费产品中,偶尔的瞬时GNSS失可能是可以接受的。这种情况,如果低成本亚洲天线的消费观是可以接受的,选择是平常的。如果要求连续可用性,则将在良好的天线和优秀的天线之间选择,并且比较评估竞争者的C/No开始。 对于精确的GNSS应用,唯一的选择是高质量的双馈天线另一个考虑因素是天线通常是更大系统非常明显的一部分,并且不可避免地代表了用户设备的质量。在这种情况下,天线外壳的坚固性和外观也可以是保持最终产品形象的标准。

 《Accutenna™技术

TallysmanAccutenna™技术已证明其能够提供卓越的多路径信号抑制,能提供超越其尺寸和价格的精度。 Accutenna™技术:
•采用Tallysman独特的双馈电平板天线技术

•在整个天线带宽上提供真正的圆形响应

•提供卓越的多路径和交叉极化信号抑制

•预滤波选,对近带信号额外保护

•适用于仅GPS L1或多星GPSGLONASSBeiDouGalileo
GNSS正在改变。越来越多的接收机能够访问多星GPS / GLONASS / BeiDou / Galileo)。从前单馈天线对于单星座/单频率接入完全没有问题,但在今世界,TallysmanAccutenna™技术是必要的,以提供您所需的精度。
 
什么是双馈天线?
双馈陶瓷贴片架构    

双馈陶瓷贴片架构GNSS天线双馈陶瓷贴片架构GNSS天线  

 

 

 

 

 

双馈天线是两个正交取向的偶极。当每个偶极子接收到的信号相加时,两个信号90度相移时,能完美地在天线的全带宽上复制圆极化响应。这极大地改善了对交叉极化(多路径)信号的抑制,并因此提供比单馈电天线高得多的精度。
单馈电贴片天线仅在其单谐振频率是圆形的。当载波离开单个谐振频率时,它们越来越呈现椭圆形。因此,当使用单个馈电天线接入两个星座,例如GPS1575.42MHz)和GLONASS1602MHz)时,它被调谐到两个频率的中点;通常为1590MHz。结果是GPSGLONASS信号对于这个天线看起来是椭圆的。因此,当单馈电天线接收GPSGLONASS信号时,其还接收也是椭圆的交叉极化(多路径)信号。最终结果是统计学上非常差的精度。

单馈响应与双馈响应的比较单馈响应与双馈响应的比较

 

 

 

 

 

 

 

 

 

 

2(左边)说明了这一点。在1590MHz的调谐频率下,单馈电天线具有约25dB的交叉极化信号抑制,但在中心频率1575.42MHz1602MHz处仅有约5dB的抑制
GNSS接收机有赖天线呈现的信号质量。没有接收机可以完全减轻天线的影响。2(右边)很好地使用说明Accutenna™技术的效果,在整个带宽上提供了圆响应。在两个中心频率处的交叉极化抑制明显更好:在1575.42MHz大约25dB,在1602MHz大约20dB
TallysmanAccutenna™技术被应用于许多天线。该技术证明了其对于多径抑制的优越性,其为接收机提供了最佳机会,可靠精确地报告位置坐标,如在Accutenna ™技术的独立并行测试中贴片天线同时访问GPS L1GLONASS G1,而不是单个反馈

   文: 深圳市海和利创新科技有限公司       图及英文原文:Tallysman Inc

阅读该条目的剩余部分 »

Navis导航术语(二)

发表 2017/01/21

masks See satellite masks

maximum PDOP A measure of the maximum Position Dilution of Precision (PDOP) thatis acceptable in order for the GPS processor todetermine a locationsolution (see PDOP)

NAVSTAR The name given to the GPS satellites,built by Rockwell International,which is an acronym formed from NAVigationSystem with Time AndRanging.

NMEA National Marine Electronics Association.An association that defines

marine electronic interface standards for thepurpose of serving thepublic interest

NMEA 0183 message NMEA 0183 is a standard for interfacing marine electronics

navigational devices. The standard specifiesthe message format used tocommunicate with marine devices/components.

packet An “envelope” for data, which contains addresses and error checking

information as well as the data itself.

parity A scheme for detecting certain errors indata transmission. Paritydefines the condition (i.e., even or odd偶数或奇数) ofthe number of items in a set

(e.g., bits in a byte).

PDOP Position Dilution of Precision. PDOP is aunitless figure of merit that

describes how an uncertainty in pseudo-range affects position solutions.

PDOP constellationswitchA value, based on PDOP, that defines when theGPS receiver/processorshould switch between 2-D and 3-D GPS modes.The PDOP

constellation switch is only active when theGPS mode of operation isset to Auto.

PRN Pseudo-random noise. Each GPS satellitegenerates its own distinctivePRN code, which is modulated onto each carrier.The PRN code servesas identification of the satellite, as a timingsignal, and as a subcarrierfor the navigation data.

伪随机杂讯,其序列可鉴别卫星。

protocol A formal set of rules that describe amethod of communication. The

protocol governs the format and control ofinputs and outputs.

pseudo-range A measure of the range from theGPS antenna to a GPS satellite.Pseudo-range is obtained by multiplying thespeed of light by theapparent transit time of the signal from theGPS satellite. Pseudo-rangediffers from actual range because the satelliteand user clocks are offset弥补from GPS time and because of propagation传播 delaysand other errors

RAM Random-Access Memoryrandom-access memory Memory in which information can be referred to in an arbitrary任意orrandom order. The contents of RAM are lost whenthe System Unit isturned off

range A term used to refer to the distanceradio signals can travel before they

must be received or repeated due to loss ofsignal strength, the curvature曲率of the earth and the noise introduced becauseof moisture in the airsurrounding the earth's surface.

range rate The rate of change of range betweenthe satellite and receiver. The

range to a satellite changes due to satelliteand observer motions. Rangerate is determined by measuring the Dopplershift of the satellite beacon信标carrier.

read-only memory Memory whose contents can beread, but not changed. Information isplaced into ROM only once. The contents of ROMare not erased when

the system unit's power is turned off.

real time clock An electronic clock, usually batterypowered, that keeps current time.

Used by a GPS receiver during a warm or hotstart to determine whereto search for GPS satellite signals.

Relative positioning The process of determiningthe vector distance between two points andthe coordinates of one spot relative toanother. This technique yields

GPS positions with greater precision than asingle point positioningmode can.

rise/set time Refers to the period during whicha satellite is visible; i.e., has an

elevation angle that is above the elevation mask. A satellite is said torise” when its elevation angle exceeds themask and “set” when theelevation drops below the mask.

ROM Read-Only Memory.

RS-232 A communication standard for digitaldata. Specifies a number of signal

and control lines. RS-232 is often associatedwith a 9 pin connectorcalled a DB-9

RTCM Radio Technical Commission for MaritimeServices. Commission thatrecommends standards for differential GPSservices. “RTCMRecommended Standards For Differential GPSService,” prepared by

RTCM Special Committee No. 104 (RTCM SC-104),defines acommunication protocol for sending GPS differential corrections from adifferential reference station to remote GPSreceivers.

satellite masks As satellites approach thehorizon, their signals can become weak anddistorted, preventing the receiver fromgathering accurate data. Satellite

masks enable you to establish criteria forusing satellite data in aposition solution. There are three types ofsatellite masks: Elevation,SNR, and PDOP.

SA Selective Availability. This is the name ofthe policy and theimplementation scheme by which unauthorizedusers of GPS will havetheir accuracy limited to 100 meters 2D RMShorizontal and 156 meters2D RMS vertical.

SEP Spherical Error Probability.球面误差概率The radius ofa sphere such that 50% of theposition estimates will fall within the surfaceof the sphere.

Serial communication A system of sending bitsof data on a single channel one after the other,rather than simultaneously.

serial port A port in which each bit of informationis brought in/out on a single

channel. Serial ports are designed for devicesthat receive data one bit ata time.

signal to noise level GPS/GLONASS signals withSNRs that do not meet the mask criteriaare considered unusable.

signal to noise ratio A measure of the relativepower levels of a communication signal andnoise on a data line. SNR is expressed indecibels (dB).

SNR Signal to Noise Ratio.

spread spectrum The received GPS/GLONASS signalis a wide bandwidth, low-power

signal (-160dBW). This property results frommodulating the L-bandsignal with a PRN code in order to spread thesignal energy over abandwidth which is much greater than the signalinformationbandwidth. This is done to provide the abilityto receive all satellitesunambiguously and to provide some resistance tonoise and multipath.

SPS Standard Positioning Service. Refers to theGPS as available to theauthorized user.

start bit In asynchronous transmission, thestart bit is appended to the beginning

of a character so that the bit sync andcharacter sync can occur at thereceiver equipment.

stop bit In asynchronous transmission, the stopbit is appended to the end of

each character. It sets the receiving hardwareto a condition where it

looks for the start bit of a new character.

SV Space Vehicle (GPS satellite).

Synchronous communicationA method of sending digital data in which thebits come at fixed, ratherthan random, times and are synchronized to aclock.

URA Satellite user range accuracy. The URA issent by the satellite and iscomputed by the GPS operators. It is astatistical indicatory of thecontribution of the apparent clock andephemeris prediction accuraciesto the ranging accuracies obtainable with aspecific satellite based onhistorical data.

UTC Universal Time Coordinated. Uniform atomictime system/standard that

is maintained by the US Naval Observatory. UTCdefines the local solarmean time at the Greenwich Meridian.

UTC offset The difference between local timeand UTC (Example: UTC - EST = 5hours).

 

阅读该条目的剩余部分 »

Navis导航术语 (一)

为何市场上支持Glonass的新模块会丢星、崩溃?

发表 2016/05/18

鉴于目前客户反映友商最新型号模块(支持GPS+Glonass)频频出现卫星突然丢失的现象、甚至系统崩溃,以及部分老版本NV08C-CSM(V3.1、V2.7、V2.1)接收机出现类似现象,有必要做些说明。

先说最重要的结论,Glonass星座26号为新型K卫星有些“棘手”问题一、两年内解决不了,有赖接收机厂商修补Bug(我们于2014年7月18日发布的FW0207固件修复了这个问题),仅凭开发者与用户自己是无法解决的。

俄罗斯在轨导航卫星28颗,其中GLONASS-M卫星26颗,GLONASS-K1卫星1颗,提供定位、导航与授时服务的卫星23颗(#GC734维修中),全部为GLONASS-M型号。目前Glonass有新型卫星#26颗(频率-5),但Glonass ICD v5.0官方文件只支持24颗卫星,所以#26卫星Orb Slot重新编号为#20。ICD并不支持#26卫星,GLONASS-K还在测试中(#GC701,Flight Test),不能做导航用。 #25与#27卫星在冷启动时有同样问题。按照卫星系统解码编号(GSV):

GPS 1 ~ 32.
WAAS 33 ~ 64.
GLONASS  65 ~ 96.

某友商模块一直以来支持GPS或Glonass(二选一),第8代新模块支持GPS+Glonass,但常常发生丢星、类似系统崩溃现象,就是因为26号GLONASS-K星原因。而其接收机模块还没有从软件技术上修复这个Bug
 
我们在售模块没有这个问题,客户无需担心、请放心使用。NV08C-CSM较新版本:
NV08C-CSMv4.1硬件采用固件版本FW0408、          
NV08C-CSM v5.0硬件采用固件版本R503/B503。
R503初始设置为 GPS+GLONASS, 可更改设置为 GPS+北斗;

B503初始设置为 GPS+北斗可更改设置为 GPS+GLONASS。

NV08C-CSM 5.1固件默认配置及可设置、可保存:

NV08C-CSM v5.1固件版本0504;
固件版本0504初始设置为GPS+GLONASS,但可以设置为GPS+北斗可保存于EEPROM中;

另外固件版本B504初始设置为GPS+北斗。 

FW 0207、FW0406、FW0408,R503等都没有24颗星之外Glonass-K星问题。

FW0206及以前版本固件(对应硬件NV08C-CSM V3.x、V2.x)没有保护24颗卫星之外的数据结构,只能保存24颗卫星数据。所以解码#26卫星导致损坏内部数据结构,最后FW0206工作起来看起来不稳定(跟踪与导航)。升级固件到FW0207即可解决NV08C-CSMv3.x、v2.x冷启动上述丢星问题。
提示:查设备厂商、型号、固件版本号命令$POVER*5E<CR><LF>,举例结果 $ ALVER ,NVS ,CSM51 ,0504 *73 <CR><LF> 
俄罗斯Glonass在轨卫星运行状态2016年5月18日俄罗斯Glonass在轨卫星运行状态2016年5月18日
从上述实时卫星运行图可以看出,#GC737在维修中,#GC738、#GC725在验证中,#GC714是备用卫星,但同时这些卫星已经终止运行;#GC701在飞行测试中(没有正式纳入“合法”使用)。所以实际上就是冷启动时#GC701影响到Glonass数据结构。当#GC719不可视,冷启动接收机将正常捕获Orb. Slot 20上的#GC701-它与#GC719共Orb. Slot 20,但根本捕获不到。

大家知道以前“星球大战计划”与美国对抗的国家叫苏联,其主要军事技术集中在俄罗斯、乌克兰境内。后来1991年末苏联解体,俄、乌分家。 2014年3月俄罗斯“吞并”乌克兰克里米亚危机,西方国家对俄罗斯进行了制裁,其中包括停止提供GLONASS-K卫星研发所需的抗辐射加固器件,使GLONASS-K卫星的研制受到重大影响。 

2015年3月,俄罗斯航天系统公司(RCS)与信息卫星系统-列舍特涅夫公司(ISS Reshetnev)共同宣布,将研发全部由俄罗斯部件组成的GLONASS-K卫星。俄罗斯航天系统公司首席执行官Andrew Tyulina称:俄罗斯计划尽可能快地在GLONASS卫星上停止使用采购自国外的电子器件,计划在2019年前使GLONASS卫星电子器件的国产化率达到80%。
2014-12-1这次发射的“格洛纳斯-K”卫星是此前“格洛纳斯-M”卫星的升级版本,预期使用寿命由上一代的7年提升至10年,重量由1415千克减少至935千克。 “格洛纳斯-K”卫星将逐步替代俄全球卫星导航系统中运行的“格洛纳斯-M”卫星,以提高导航精确度。

Glonass-K卫星是完全基于非压力式平台的新型卫星, 使用寿命达到十年,该型号卫星完成后,Glonass系统将与GPS不相上下,用户可以使用两套系统。与美国的GPS系统不同的是GLONASS系统采用频分多址(FDMA)方式,根据载波频率来区分不同卫星(GPS是码分多址(CDMA),根据调制码来区分卫星)。每颗GLONASS卫星发播的两种载波的频率分别为L1=1,602+0.5625k(MHz)和L2=1,246+0.4375k(MHz),其中k=1~24为每颗卫星的频率编号。所有GPS卫星的载波的频率是相同,均为L1=1575.42MHz和L2=1227.6MHz, 同一颗卫星满足L1/L2=9/7。

负责GLONASS系统卫星研发的俄罗斯信息卫星系统-列舍特涅夫公司CEO称:自主研发GLONASS-K2所需的抗辐射加固器件至少需要1~2年的时间。为此,将继续生产7颗GLONASS-K1卫星,使该型号卫星数量达到9颗,以满足GLONASS系统维持与发展的需要。

Glonass卫星在全球分布DOP还是相当不错的(数值越小信号越好)、误差小,如下图:

Glonass全球DOP 2016年5月18日Glonass全球DOP 2016年5月18日

 

Glonass跟踪性能评估2016年5月18日Glonass跟踪性能评估2016年5月18日

Glonass星座跟踪Glonass星座跟踪

Current values of SC GLONASS code measurements' errors (URE)Current values of SC GLONASS code measurements' errors (URE)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NV08C-CSM融合GPS、Glonass,或是GPS、北斗,获得1.5米准确度(RMS 65%, 卫星信号-135 dBm 24小时平均值)。满足单点定位高精度、伪距差分等应用。 

     海和利 2016.5.18.

阅读该条目的剩余部分 »

YostLabs系列产品问答

发表 2015/12/14

YostLabs(前YEITechnology)系列产品

MocapSuit问答

3-Space系列AHRS/IMU体感跟踪传感器3-Space系列AHRS/IMU体感跟踪传感器

1. MocapStudio能否输出FBX文件

Mocap Studio能导出动作捕作文件格式为BVH;但可以输入这些文件到MotinoBuilder(或类似应用软件)然后再导出FBX格式。也可以用MotionBuilder插件,将TSH文件输入MotinoBuilder。

2.Windows 8.1操作系统电脑安装是否要注意什么?
是的。Window是8.1操作系统要遵循特殊的方法安装,参考

Windows 8 does not allowunsigned drivers to be installed by default. This is the workaround at allowyou to install.
a) Move your mouse cursor to the upper right part of the Metro screen andselect Settings -> More PC Settings -> choose General –> Under “AdvancedStartup” –> Restart now.
b) Your system will now restart. Wait for it to show the boot menu. You will beprompted with a menu with following options:

1) Continue
2) Troubleshoot
3) Turn off
Choose Troubleshoot.
c) The following menu appears:

Refresh your PC
Reset your PC
Advanced Options
Choose Advanced Options.
d) Then the following menu appears:

System Restore
System Image Recovery
Automatic Repair
Command Prompt
Windows Startup Settings
Choose Windows Startup Settings, then click Restart.
e) Now the computer will restart and the boot menu appears. Choose “DisableDriver Signature Enforcement” from the menu. Now Windows will start, andyou should be able to run the 3-Space installer and properly install thedriver.

Update for Windows 8.1
The steps for allowing unsigned drivers to be installed has changed a little.These are the new steps to follow.
1.In the Metro screen select PC Settings -> choose Update and recovery –> choose Recovery –> Under “Advanced startup” –> Restart now. (Note: You may also get to "Adavance startup" by searching for its name under PC Settings)
2.Your system will now restart. Wait for it to show the boot menu. You will be prompted with a menu with following options:
1.Continue
2.Troubleshoot
3.Turn off your PC
Choose Troubleshoot.
3.The following menu appears:
1.Refresh your PC
2.Reset your PC
3.Advanced Options
Choose Advanced Options.
4.Then the following menu appears:
1.System Restore
2.System Image Recovery
3.Startup Repair
4.Command Prompt
5.UEFI Firmware Settings
6.Startup Settings
Choose Startup Settings, then click Restart.
5.Now the computer will restart and the boot menu appears. Choose “Disable Driver Signature Enforcement” from the menu. Now Windows will start, and you should be able to run the 3-Space installer and properly install the driver.
3.Windows10操作系统电脑安装是否要注意什么?
3-Space Sensor Suite Installer for Windows 10.

4.电池使用多久

充满电后传感器使用4~5小时。

 

5. 有什么机器视觉库可以用吗OpenCVOpenCV
推荐基于视觉的定位系统作绝对位置定位跟踪。有些库可以用,如跨平台视觉库OpenCV,经授权可以在商业与研究领域使用。

 

6. Mocap Studio支持原始数据输出吗
Mocap Studio目前不支持原始数据,但由于是开源可以自己添加这项功能。需要开源代码,直接联系我们。我们正在升级Studio,

使得可以支持多种类型数据输出。

 

7. 3-Space Sensor Suite软件一次能从多个传感器读取数据吗

3-Space Sensor Suite软件一次只能连接一个传感器,也只能从一个传感器读出数据。但是,可以同时打开多套Suite记录多个数据,利用系统的时间戳同步数据。另外,如果你有一些基本的编程经验,您可以编写一段脚本(script)程序同步传感器时间戳,并在同一时间收集来自所有传感器数据。我们有基于C和Python语言的基本案例放在网上:

http://www.yeitechnology.com/c-code-examples#multi_wireless_sensor_example

http://www.yeitechnology.com/python-code-examples#multi_wireless_sensor_example

 

8. 我打算写自己的程序了,要与3-Space传感器通信,我该如何开始

您可以了解下3-Space传感器协议,与所有传感器/适配器指令,各传感器型号用户使用手册。我们将几个Python和C语言的案列放在了网上:

http://www.yeitechnology.com/python-code-examples

http://www.yeitechnology.com/c-code-examples

我们也提供API接口可以发指令和从传感器收集数据。

 

9. 无线传感器对比蓝牙传感器

一般说,无线传感器比蓝牙通信更可靠。可靠性与传输距离取决于传感器中的蓝牙模块。根据我们的测试,蓝牙传感器距离(约10米)明显小于无线传感器(大约30米或更远)。 个人电脑容许同时连接7个蓝牙传感器(取决于电脑)。我们看到的最好结果是移动Android装置连接不多于2个蓝牙传感器。无线适配器可以同时连接多达15个无线传感器,多个无线适配器可以连接于同一台电脑。无线传感器通信也更加平滑和迅速。通常,我们只推荐蓝牙传感器用于需要通过Android操作系统装置发送数据的应用。

 

10. 可以用Linux操作系统吗

我们的传感器兼容Linux。如果您对在Linux环境下连接一个传感器有疑问,可以参考我们的Forum。

http://forum.yeitechnology.com/viewtopic.php?f=3&t=23&p=69.

http://forum.yeitechnology.com/viewtopic.php?f=3&t=262.

 

3-Space系列AHRS/IMU传感

1.General 总则

1.1 What parts (accelerometer, gyroscope, etc.) do you use in your sensors?

We replace the parts we use on our sensor boards as better components become available,

so we cannot guarantee a certain part will be used on a given board.

 

1.2 Can I use the 3-Space sensors for positional tracking?可用3-Space传感器作位置跟踪吗

Our 3-Space sensors are only capable of accurately tracking rotational movements. Translational

tracking (distance, position) would require double integration of the sensor's acceleration reading,

which inherently introduces a lot of error. Although we do offer pedestrian tracking as a form of

positional tracking with our 3-Space mocap suit, this will only work with humans as it relies on

walking motions, and one foot being on the ground at any given time.

If you had some other way of tracking the velocity or position at any given time, it would be possible

to use this data in conjunction with our sensor to determine the position by dead reckoning:

http://en.wikipedia.org/wiki/Dead_reckoning.

However, if you want just one device to track position,

you may want to try looking into a GPS or something similar.

我们3-Space传感器能够精确追踪方向。平移跟踪(距离、位置)要求同时融合传感器器加速度数据,

会有误差。虽然我们的MocapSuit体感服提供行人追踪工作模式,但只适合个人,因为数据获取依赖步行运动,

任何时候有一只脚踏在地面。

如果您有其它方式获得速度与位置,就可以结合我们的传感器航位推算测定位置。

航位推算维基百科:http://en.wikipedia.org/wiki/Dead_reckoning。

如果您希望设备跟踪位置,可以考虑GPS或其它卫星导航系统。

2. Compatibility兼容性

2.1 Are 3-Space sensors compatible with Linux?

Our sensors are compatible with Linux. Please refer to this post in our forum for more information

and a few examples: http://forum.yeitechnology.com/viewtopic.php?f=3&t=23&p=69.

3-Space传感器兼容Linux操作系统,参考论坛上几个案例信息:http://forum.yeitechnology.com/viewtopic.php?f=3&t=23&p=69.

 

2.2 Are 3-Space sensors compatible with Mac OS?

Our sensors are compatible with Mac OS, and the drivers required to detect and communicate

with our sensors should already be installed. Our calibration software is currently only compatible

with Windows, but we do have sample code available on our website that will work on Mac:

3-Space传感器兼容苹果Mac OS操作系统,但要安装与我们传感器通信的驱动程序。我们的校准软件只支持微软Windows,

但我们有案例源代码放在网站上、可以配合Mac。

 

2.3 Can I use the 3-Space mocap suit or PrioVR with MotionBuilder?

Currently there is no way to capture mocap data live through MotionBuilder. We will be releasing

a plugin for MotionBuilder that will allow this. Right now, you can record animation files in our

Mocap Studio software (in BVH format) and import them into MotionBuilder.

目前Mocap Suit或是Prio不能通过MotionBuilder实时捕作数据。我们有MotionBuilder插件,可以先用

Mocap Studio软件录制动漫文件(BVH格式),然后导入MotionBuilder。

 

2.4 Can I use the 3-Space mocap suit or PrioDK with Maya?

You can record motion capture files (in BVH format) with PrioVR using our Mocap Studio software: http://www.yeitechnology.com/yei-3-space-mocap-studio, then import the files into Maya or other similar programs. We will also be adding FBX as an export format option.

可以先用Prio在Mocap Studio软件录制动作文件(BVH格式),然后导入Maya或其它类似程序。我们也会加入FBX作为输出格式选项。

Mocap StudioMocap Studio

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Wireless 3-Space Sensors 无线3-Space传感器

3.1 I want to use a sensor that doesn’t require me to have a wired connection. What are my options?

Our wireless model communicates with our wireless dongles, which can be plugged into a PC by

USB and is used to communicate and collect data from the sensor in real time. The range on the

dongle is about 100 feet. You can learn more about this sensor and dongle here:

http://www.yeitechnology.com/3-space-product-family-category/wireless.

We recommend our Bluetooth model for communicating with Android devices in real time. Our

Bluetooth sensors work within a range of about 30 feet, but this depends on the range of the

Android device or adapter you use. You can see more about this sensor here: http://www.yeitechnology.com/productdisplay/3-space-bluetooth.

Our data-logging model contains a 2gb micro SD card which can be used to record data to later

download and analyze: http://www.yeitechnology.com/productdisplay/3-space-data-logging.

The battery life on all of our sensors is about 5 hours, and they can be plugged in to charge via

USB. They are also all capable of data collection via a USB connection.

 

3.2 I cannot decide whether I should use the wireless or Bluetooth model. What do you recommend?

In general, our wireless sensors offer better performance than our Bluetooth model, due to the

lower reliability of Bluetooth communication in general. The reliability and range will depend on

the Bluetooth module in your particular device, but our tests show Bluetooth range (about 10m

in our tests) is significantly less than the wireless range (about 30m). PCs will allow for up to 7

Bluetooth sensors to be connected at the same time (depending on the PC). We have seen the

best results with mobile Android devices using no more than 2 Bluetooth sensors. On the other

hand, each of our wireless dongles can communicate with up to 15 wireless sensors at a time,

and multiple dongles can be used on a single PC. Communication with wireless sensors is also s

moother and faster than Bluetooth sensors. Typically, we only recommend using Bluetooth

specifically for applications that require data to be sent to an Android device.

 

3.3 What is the battery life of the wireless, data-logging, and Bluetooth sensor models?

The battery life is typically 4-5 hours.  It is possible to extend the battery life with a USB battery

extender like you would use with a cell phone. For example, an 8400 mAh cell phone battery

extender would extend the battery life to about 3 days.

The battery is rated to last for 400 charge cycles until the battery life reaches 80% of its initial

capacity. We estimate the batteries should last around 18 months to 4 years depending on how

often they are used.

 

3.4 What is the range on the 3-Space Bluetooth sensor?

We have tested our Bluetooth sensors up to 15m, but found that they started working sporadically

after about 10m. However, the range you get will depend heavily on which Bluetooth adapter you

are using. The one we used for testing was a Belkin adapter (model F8T017).

 

4. YEI 3-Space Sensor Software/Firmware  3-Space传感器软件/固件

4.1 Windows 8 Installation

Installing YEI 3-Space Sensor Drivers on Windows 8:

Windows 8 does not allow unsigned drivers to be installed by default. This is the workaround at

allow you to install.

a) Move your mouse cursor to the upper right part of the Metro screen and select Settings -> More PC Settings ->  choose General –> Under “Advanced Startup” –> Restart now.b) Your system will now restart. Wait for it to show the boot menu. You will be prompted with a menu with following options: 
1) Continue 
2) Troubleshoot 
3) Turn off 
Choose Troubleshoot. 
c) The following menu appears: 
Refresh your PC 
Reset your PC 
Advanced Options 
Choose Advanced Options. 
d) Then the following menu appears: 
System Restore 
System Image Recovery 
Automatic Repair 
Command Prompt 
Windows Startup Settings 

Choose Windows Startup Settings, then click Restart. 

e) Now the computer will restart and the boot menu appears. Choose “Disable Driver Signature Enforcement” from the menu. Now Windows will start, and you should be able to run the 3-Space installer and properly install the driver.

Update for Windows 8.1:

The steps for allowing unsigned drivers to be installed has changed a little. These are the new steps to follow. 
In the Metro screen select PC Settings -> choose Update and recovery –> choose Recovery –> Under “Advanced startup” –>Restart now. (Note: You may also get to "Adavance startup" by searching for its name under PC Settings) 
Your system will now restart. Wait for it to show the boot menu. You will be prompted with a menu with following options: 

Continue 
Troubleshoot 
Turn off your PC 

Choose Troubleshoot. 
The following menu appears: 
Refresh your PC 
Reset your PC 
Advanced Options 

Choose Advanced Options. 
Then the following menu appears: 
System Restore 
System Image Recovery 
Startup Repair 
Command Prompt 
UEFI Firmware Settings 
Startup Settings 

Choose Startup Settings, then click Restart. 
Now the computer will restart and the boot menu appears. Choose “Disable Driver Signature Enforcement” from the menu. Now Windows will start, and you should be able to run the 3-Space installer and properly install the driver.

4.2 Can't Update Firmware

When I try to update my firmware, I am getting the following message: "This

firmware is not the correct version of this type of sensor." What am I doing wrong?

First, make sure that you have downloaded the correct firmware for your sensor model.

Second, make sure you are using the latest version of the 3-Space Sensor Suite. You can

download and install the latest version from this link:

  

4.3 Mocap Studio Data Options

 Can I export raw data (such as acceleration) from the Mocap Studio?

The Mocap Studio is currently not able to export raw data, but it is open-source so it is possible

to add this functionality yourself. If you would like to have access to the source code, please

email us. We will be updating the Studio to allow for more types of data output.

 

4.4 Logging with Multiple Sensors in Suite

Can I use the 3-Space Sensor Suite to log data from multiple sensors at the same time?
As the 3-Space Sensor Suite software can only connect to one sensor at a time, it can also only log data from one sensor data time. However,it is possible to open multiple instances of the Suite and record multiple logs simultaneously,using the system timestamp to synchronize the data. Alternatively, if you have some basic programming experience, you can write a script that synchronizes the sensor timestamps and collects data from all sensors at the same time. We have a basic example of this on our website in both C and Python:http://www.yeitechnology.com/c-code-examples#multi_wireless_sensor_example 
http://www.yeitechnology.com/python-code-examples#multi_wireless_sensor_example 
Depending on your application, you may be interested in using our Mocap Studio software to capture data from multiple sensors: http://www.yeitechnology.com/yei-3-space-mocap-studio. 
 

4.5 Writing Software for 3-Space

How do I get started writing my own software to communicate with the 3-Space sensors?

You can learn more about the 3-Space sensor protocol, as well as all of the available sensor/dongle

commands, in the user’s manual for your respective sensor model. We provide some examples on

our website of our serial protocol in Python and

C:http://www.yeitechnology.com/python-code-examples

http://www.yeitechnology.com/c-code-examples

We also offer an API which can be used to send commands to and gather data from our sensors: http://www.yeitechnology.com/yei-3-space-application-programming-interface.

 

5. 3-Space Sensor Settings & Options  3-Space传感器设定与选项

5.1 Acceleration Data

I see that 4 different types of acceleration data can be given by the sensor. What do these mean?

The raw acceleration is taken directly from the accelerometer and converted into units of g.

Corrected acceleration is the value of the acceleration once the calibration has been applied.

Normalized acceleration is the unit vector of acceleration, and gives only the direction of

acceleration (not the magnitude). The corrected linear acceleration in global space takes into

account the sensor's orientation, and gives the acceleration acting on the sensor in the global

frame rather than the sensor's reference frame. This value is also given in units of g.

 

5.2 Sensor Drifts after Disabling Magnetometer

I disabled the magnetometer on my 3-Space sensor, and now I am seeing a lot of

drift in my orientation data. Why is this happening, and what can I do about it?

All gyroscopes inherently have some drift over time. Unfortunately, it is not possible to compensate

for this drift without another external reference. In our sensors, we use the magnetometer data to

correct for this -- so if the magnetometer is disabled, you may be seeing some drift in orientation

due to this. You may want to try calibrating the gyroscope to decrease the amount of drift as much

as possible, but we recommend enabling the magnetometer and using gradient descent calibration

to compensate for magnetic interference.

 

5.3 Gyroscope Drift Rating

How much drift can I expect to see from the gyroscope if I have the magnetometer disabled?

The raw drift on the gyroscope is rated by the manufacturer as 11º/hour, but we have seen it drift

at about .92º/minute (55.2º/hour). Some of our sensors have been upgraded to have an improved

gyroscope, which is rated for a drift of 1.5º/hour. Upgraded sensors currently include the wireless,

embedded, Bluetooth, and data-logging models.

 

5.4 Gradient Descent 梯度下降

What is gradient descent?

Gradient descent is a replacement for ortho-calibration, and uses the same calibration process. Gradient descent
is designedto give more accurate results than sphere and ortho-calibration combined.
 
5.5 Filter Mode Options 滤波模式选项

I see that there are 4 filter modes available -- Kalman, Q-GRAD, Q-COMP, and IMU.

What is the difference between these, and which one should I be using?

The Kalman filter (which is currently the default filter) allows for rates of up to 250Hz, for both

logging and real-time data acquisition. This is currently the filter that we recommend for everyday

orientation data collection.

The Q-GRAD filter updates faster (up to 850Hz) and is more resistant to changes in magnetic field

than the Kalman filter, but since it is slower at incorporating changes in the accelerometer and

magnetometer readings it may take time to settle into the right orientation.

The Q-COMP filter updates at a rate of 850Hz or more over a USB connection with similar

performance and accuracy to the Kalman filter. This is currently the filter we recommend for

high-speed orientation data collection.

IMU mode does not do any orientation filtering (thus it allows for the highest data transfer rate

of up to 1300Hz), and should only be used for getting data straight from the accelerometer,

magnetometer, and/or gyroscope.

5.6 Strange Data with Euler AnglesI am using the Euler angle output, but in certain orientations my yaw and roll
values begin to look strange. Why is this happening?
If the pitch value nears 90º, this may result in inaccurate readings for the yaw and roll angles. This is due to gimbal lock,
which is an inherent limitation with Euler angles.
You can read moreabout this here: http://en.wikipedia.org/wiki/Gimbal_lock.
 
6.PrioDK
6.1 PrioDK vs. 3-Space Mocap SuitPrioDKPrioDK
What is the difference between PrioDK and the 3-Space Mocap suit?    PrioDK与Mocap suit的不同之处
The functionality of PrioDK will be essentially the same as the 3-Space Mocap suit.The main difference is that PrioDK has all of the sensors daisy-chained to one another and uses 1 hub for wireless communication. On the other hand, the 3-Space suit's sensors each have their own wireless module which not only increases the overall cost of the suit, but also means that communication is slower, and there is a greater chance of wireless interference when using multiple suits. However, this also means that the 3-Space suit offers more freedom of movement, as well as the ability to use the sensors individually.PrioDK is targeted toward gamers and for game content creation, so the suit design makes it simple and fast to put on and is pre-configured for the human body. The 3-Space mocap suit is more customizable, with options that can be set on how to capture data,filter parameters, etc. The accuracy between the two suits is about the same.
PrioDK体感服与Mocap suit动捕服基本功能是一样的。不同之处在于PrioDK所有传感器都是彼此菊花链接,提供一个集线器与主机做无线通信;3-Space suit每个传感器有自己的无线模块,成本有所增加、通信变慢,还有可能在同时使用多套动捕服时产生无线通信干扰;当然动捕服给了你更大的自由度,同时每个传感器可以单独使用;PrioDK针对的目标市场是游戏玩家和游戏内容制作者,所以设计为简单和快速穿上,已经预设置好了适合全身身体;动捕服则更加个性化,有如何捕作数据的设置选项、滤波器参数等;二者精度基本一样。
 
6.2 Motion Capture Gloves
Will PrioDK include motion capture gloves? 

Motion capture gloves which will integrate with PrioDK directly are being considered.

However, development on this would not begin until after the first release of PrioDK in 2016.

 

6.3 Using Multiple PrioDK Suits 多套Prio体感服PrioDK多人玩的躲避球游戏,同一空间多达30个人各自穿PrioDK一起玩!PrioDK多人玩的躲避球游戏,同一空间多达30个人各自穿PrioDK一起玩!

How many PrioDK suits can be used in the same physical space?

Each suit will require its own base station for communication, with approximately 30

PrioDK suits being supported in a shared space. 同一空间,多达30套Prio体感服,每套体感服需要一个盒子(基站)。

 

6.4 PrioVR Lite vs. Core vs. Pro 目前统一为PrioDK

What is the difference between the PrioVR Lite, Core, and Pro suits? 

The difference between thesof 11 sensors plus the chest hub sensor. Sensors are

located on the hands, lower arms, upper arms, chest, head, upper legs, and lower

legs PrioVR Pro is the full suit which includes 16 sensors plus the chest hub sensor.

Sensors are located on the hands, lower arms, upper arms, chest, head, upper legs,

lower legs, shoulders, feet, and torso.

 

6.5 Game Compatibility

What games will PrioDK be compatible with?  PrioDK兼容的游戏

3 demo games will be released with PrioDK. One is a zombie survival game (we have

been showing off this game at several conferences), another is a dancing rhythm game,

and the third is a dodgeball game. Third party game developer support and an emulation

layer for older games will be available.e suits is the number of sensors. More sensors allow

you to track more body parts more accurately. Each suit has the following number of sensors:

Prio Lite is upper body only with 7 sensors plus the chest hub (which includes a sensor).

Sensors are located on the hands, lower arms, upper arms, chest, and head.

Prio Core is the base suit.  目前PrioDK随机带僵尸生存游戏、跳舞游戏、躲避球游戏供三款。

鼠标仿真

替代电脑鼠标,作为空鼠标工作;也可解除鼠标仿真工作模式。
以TSS-BT蓝牙惯性传感器仿真鼠标为例:
首先TSS-BT与电脑设备配对,然后Sensor Suite, Sensor菜单 -> Sensor Info,跳出HID仿真窗口,勾选Mouse格,确认OK.
电脑鼠标不能工作,空鼠标(鼠标仿真)可以控制光标。
取消空鼠标,Suite -> Sensor Info,Mouse格勾选取消,就可以用回电脑鼠标了。
To use a Bluetooth sensor as a mouse, fellow these instructions:
• Pair the Bluetooth device with your Computer. To do so, please follow the Bluetooth Sensor Setup instructions at: http://www.yeitechnology.com/sites/default/files/YEI_TSS_Quick_Start_Manual_3.0_r1_4Nov2014.pdf
• Connect to the sensor in the 3-Space Sensor Suite
• In the Sensor Suite, under the Sensor menu -> Sensor Info. A popup with a HID Emulation box will appear. Check the Mouse button, and press OK. Your mouse will now be disabled and the sensor will now control your cursor.
• To undo this, navigate back through the Suite -> Sensor Info and uncheck the Mouse box using the sensor.

air mouseair mouse

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ServoCenter Questions伺服控制问答

1. Industrial robot,such as Fanuc,Kuka,Nachi,Kawasaki,ABB, Staubli,Comau,Epson,Yaskawa,Siasun (China manufacturer) are top 10, it seems its field are different from ServoCenter, correct? Explain the position of ServoCenter please.

十大工业机器人,包括Fanuc,Kuka,Nachi,Kawasaki,ABB, Staubli,Comau,Epson,Yaskawa和中国的新松,ServoCenter似乎与工业机器人领域不同,请解释。

>Unlike industrial servos which are designed to control massive industrial robots, RC servos are small, cheap, mass-produced actuators used for radio control and small-scale robotics. Today, RC servos are used in small-scale robotic applications, animatronics, unmanned aerial vehicle (UAV), including hobbyist and professional applications.

The ServoCenter™ family of embedded servo controllers allows RC servo motor control from any USB, serial RS-232, MIDI-capable device. ServoCenter is also available in DIP and TQFP chip packages. The ServoCenter 4.1 Sequencer allows complex tasks to be programmed via a script sequencer in addition to other programming options that are standard in the ServoCenter products.

ServoCenter allows amazing and unsurpassed control of the seek position and seek speed of up to sixteen connected servos -- independently and simultaneously, with simple, logical commands. ServoCenter also offers 16 channels of digital I/O which allow it to act as an easy interface for a variety of development needs.

不象工业伺服马达其目的是为了控制大量的工业机器人,RC无线电控制伺服马达是小、价格便宜、大量生产的执行器,用于控制各种小型机器人。今天,RC伺服用于小型机器人应用,电子动画,无人驾驶飞行器(UAV),包括业余爱好者和专业应用。

该ServoCenter™系列嵌入式控制器伺服允许RC伺服电机控制任何USB、串行RS-232、MIDI功能的设备。ServoCenter也可以是DIP和TQFP芯片封装。该ServoCenter4.1序程序除了那些属于ServoCenter产品标准的编程选项,复杂的任务还可以通过脚本序进行编程。ServoCenter允许惊人的、无与伦比的控制,连接高达16个位置和速度伺服马达 - 独立、同时运转,用简单的逻辑命令即可。 ServoCenter还提供16通道的数字I/O接口,允许它作为一个简单的界面,适用于各种开发需求。支持伺服马达电位器、角度传感器反馈数据输入I/O数字接口。参考应用案例(http://www.aitcl.com/products/servocenter/) 

2. SeroCenter is embedded controller of RC servo, ServoCenter connects servo and host remote controls ServoCenter, correct? If yes, ServoCenter has Rx & Tx parts, correct?

>You are correct, each ServoCenter board can control up to 16 servos. The ServoCenter is controlled via host. The host controls the ServoCenter via direct USB or serial RS-232, or MIDI connection. The ServoCenter MIDI can be controlled by almost any MIDI-capable device including digital audio workstation, MIDI keyboard controller, sequencer, etc. The ServoCenter 4.1 models are controlled via on-board sequencer, computer, microcontroller, or other electronic device capable of using our intuitive control protocol.

每块ServoCenter板能控制多达16个伺服马达。ServoCenter由上位机控制,有RS-232串口或USB、MIDI接口。ServoCenter MIDI 能控制几乎所有MIDI设备,包括数字音频工作站、MIDI键盘控制器、定序发生器等。ServoCenter 4.1型控制器能由板上序发生器、电脑、微控制器或其它采用我们直观的控制协议的电子设备控制。ServoCenter控制16个Servo马达ServoCenter控制16个Servo马达

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Could we say Industrial Robot is mainly for heavy industrial, ServoCenter is for light industrial? Please list some examples and possible applications. We need more instructions to target market.

>ServoCenter can control almost any RC style servo. RC Servos are available for almost any application ranging from miniature motors designed to fit on a UAV or small robot to larger high-powered motors designed for high-torque applications. To get an idea of possible applications, please visit our customer project showcase at http://www.yeitechnology.com/servocenter-project-showcase

ServoCenter能控制几乎任何遥控型伺服电机,不管是小型马达设计无人机或机器人,还是大力矩应用的大功率马达。

4. Does ServoCenter product family has Development Kit & board?

>I think the ServoCenter 4.1 can function as an all-in-one development kit to create products which can be implemented as either a board-level solution of as a TQFP IC solution in a commercial product.

ServoCenter 4.1也适合做开发板,创立执行板卡级方案和TQFP芯片级商业产品方案。

5. When will you continue the update job?

>ServoCenter is a stable product and currently isn’t scheduled for updates or new versions.性能稳定成熟产品.

6. How about service robot and smart robot, could you give some solution proposal (TSS-EM + ServoCenter)?

>The TSS-EM could be used along with the ServoCenter to greatly simplify the creation of either dynamic/balancing robots or motion-controlled robots that mimic a user’s natural hand or body movements. For example, the TSS-EM could be placed within a robotic system and provide the sense of balance that the robot uses and processes to subsequently drive servos that are connected to a ServoCenter board. Another example would be utilizing TSS-EM modules mounted on a human body or in a hand-controller to sense movement information that would be sent to a robotic arm that is controlled by the ServoCenter. The resulting robotic system would allow tele-operation and could be placed in environments which are either dangerous or otherwise unsuitable for human workers.

TSS-EM、ServoCenter可用于服务机器人、智能机器人等,方便地创立动态/平衡机器人和动作控制机器人,模仿操作者的手臂、身体动作。TSS-EM传感器可置于机器人系统中感知平衡,机器人随后驱动连接到ServoCenter板的伺服马达。这样,遥控机器人系统可以在危险的场合或其它不适合人类工作的环境作业。

7. DIP chip and TQFP chip are basic controller, other boards with USB,series,MIDI,USB-mini port all base above mentioned chip?

>The DIP and TQFP chips are chip-only versions of the ServoCenter 3.1 line of servo controllers. These models are chip-only and are intended for customers who would like to integrate the chips into their own designs or products.

The USB and USB-MINI models are the latest line of ServoCenter 4.1 servo controllers. These servo controllers feature better performance and have more features than the ServoCenter 3.1.

The ServoCenter MIDI features a MIDI IN and MIDI OUT connector to allow servos to be controlled via MIDI controller such as a MIDI keyboard or digital audio workstation.

DIP、TQFP是芯片级ServoCenter控制器,适合客户打算集成控制器芯片到自己的产品设计中。

USB和迷你USB型ServoCenter是最新的SerrvoCenter4.1伺服控制器。性能更好,比ServoCenter3.1更多特性。

ServoCenter MIDI具有MIDI输入、输出接口,适合伺服电机通过MIDI控制器控制的场合,如MIDI键盘、数字音频工作站。

DIP ServoCenter伺服马达控制芯片DIP ServoCenter伺服马达控制芯片

DQFP ServoCenter伺服马达控制芯片DQFP ServoCenter伺服马达控制芯片

ServoCenter串口伺服马达控制器ServoCenter串口伺服马达控制器

ServoCenter Mini USB伺服马达控制器ServoCenter Mini USB伺服马达控制器

ServoCenter USB伺服马达控制器ServoCenter USB伺服马达控制器

 

 

 

 

 

8. According to ServoCenter Project Showcase, it seems all are small power servo application, is it possible to apply ServoCenter to following mainstream fields: NC machine, Industrial robot, Injection molding machine (plastic)?

The ServoCenter can be used in any field that can utilize RC servos.

ServoCenter适合任何遥控马达应用场合。

9. ServoCenter is for DC servo motor only, not for AC servo motor, correct? If not, then not for Variable-frequency Drive field, correct?

The ServoCenter line of products is designed to directly control RC (radio control) servos. Radio control servos are connected through a standard three-wire connection: two wires for a DC power supply and one for control, carrying a

PWM (pulse-width modulation) signal. This signal is generated by ServoCenter controller.

ServoCenter产品线专为控制RC遥控马达设计,遥控马达通过标准的三线连接——2条线直流电、1条线控制线——执行PWM脉冲宽度调制信号。该信号由ServoCenter产生。

10.遥控伺服马达RC Servo、ServoCenter是无线控制的吗?

RC Servo是一种闭环系统(直流电机DC、步进电机是一种“开环”系统),指通常用无线电遥控(Radio Control)电路进行操作的的伺服电机,伺服电机本身并不是无线电控制的,只是连接到遥控汽车、飞机上的无线接收机,伺服电机从无线接收机取得信号,意味着不必通过无线电信号去控制机器人、遥控车等,应用于伺服电机即可。可以借助PC、微控制器控制伺服电机。

ServoCenter即伺服电机控制器。电脑上发指令,给ServoCenter即可,通过ServoCenter控制伺服马达。

脉冲宽度调制(英语:Pulse Width Modulation,缩写:PWM),简称脉宽调制,是将模拟信号转换为脉波的一种技术,一般转换后脉波的周期固定,但脉波的占空比会依模拟信号的大小而改变。

阅读该条目的剩余部分 »

AquaScan水下声纳海底探“宝”

发表 2015/12/02

Aquascan水下声纳成像系统介绍

AquaScan是便携式高分辨率、高精度侧扫描声纳。专门为斜距深达250米的浅海海底勘测而设计。易用、方便携带、高性价比,是侧扫海洋勘测应用的最佳选择。传感器单元非常紧凑,接口直接接到标准的笔记本电脑,自带传感器单元和Windows®基于PC的软件。

组件

拖鱼与50米的传输线缆重28lbs(12.7Kg);

49英寸(124厘米) 长;

13英寸(32.4厘米)直径(最大处);

传感器单元重2l磅(9公斤),10英寸x 8.6英寸x 2.5英寸(长x宽x高)。Aquascan水下声纳成像系统Aquascan水下声纳成像系统

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 连接图:

AquaScan海底声纳成像系统连接图AquaScan海底声纳成像系统连接图

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AquaScan 数据 #1

罗得岛纳拉甘西特湾岩石构造。
阴影表示地层的高度。

AquaScan成像数据
:罗得岛纳拉甘西特湾岩石构造
AquaScan成像数据 :罗得岛纳拉甘西特湾岩石构造

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AquaScan 数据 #2

海底电缆横贯罗德岛纽波特与罗德岛詹姆斯敦。
电缆从右上到左下方穿过。

AquaScan声纳成像数据:
海底电缆横贯罗德岛纽波特与罗德岛詹姆斯敦
AquaScan声纳成像数据: 海底电缆横贯罗德岛纽波特与罗德岛詹姆斯敦

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AquaScan 数据 #3

记录下来的海底纹理涟漪显示水流的方向。
这使得波衰减器以最有效的方式排列。
水流的强度可通过砂波的高度和长度进行测量。
能够从岩石层探测沙质层规划水下电缆、结构,用户更好地布置路线。

AquaScan海底声纳成像数据:
记录下来的海底纹理涟漪显示水流的方向。
AquaScan海底声纳成像数据: 记录下来的海底纹理涟漪显示水流的方向。

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

开普菲尔沉船

开普菲尔是建于第一次世界大战混凝土船体货运船。267英尺/46英尺/25英尺(长/宽/吃水)。1920年10月29日开普菲尔与另一艏货运船发生碰撞后沉没于180英尺深的罗德岛纳拉甘西特湾。2010年8月31日SyQwest公司驶入纳拉甘西特湾使用AQUASCAN记录下凯普菲尔图像。

开普菲尔是建于第一次世界大战混凝土船体货运船开普菲尔是建于第一次世界大战混凝土船体货运船

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

开普菲尔数据#1

开普菲尔位于180英尺深海。
从采集到的的数据,屏幕的左侧可以看到凯普菲尔的影像。
AquaScan以3海里/小时速度拖行在浅海记录下此数据。
图像的阴影明确显示船只形状的轮廓,并证实它是完整的和竖立的。

AquaScan声纳成像,开普菲尔位于180英尺深海AquaScan声纳成像,开普菲尔位于180英尺深海

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

开普菲尔数据#2

在数据采集屏幕右侧的开普菲尔的影象可见。
通过降低AquaScan的深度,使用放大功能,以3海里/小时速度拖行获得的声纳影像。
货物在开普菲尔船头可见,尺寸大约21英尺x 14英尺。
在沉船中央是空的,为驾驶舱残迹,尺寸约为35英尺x 17英尺。

 AquaScan声纳成像,放大的开普菲尔影像AquaScan声纳成像,放大的开普菲尔影像

 

 

 

阅读该条目的剩余部分 »

Tallysman发布竞争性产品TW2920/ TW2940 / TW2926,TW3150/TW3152,VP6000

发表 2015/12/02

加拿大Tallysman公司发布TW2920(35dB增益)、TW2940(40dB增益)和TW2926(内置天线28dB增益)产品,覆盖GNSS频率从1559Mhz到1610Mhz(GPSL1, GLONASS G1, Galileo E1,和北斗B1)以及L频率差分服务从1525Mhz到1559Mhz。采用Tallysman公司Accutenna专利技术,高多路径抑制,低轴比,紧相位中心误差;更小、更轻、更低成本,比市场上达不到承诺性能的天线更佳!替代Antcom G3系列天线,性能比较如下:

TW2920,TW2940 & TW2926 对比 G3TW2920,TW2940 & TW2926 对比 G3

 

 

 

 

 

 

 

 

 

TW3150/TW3152 - 50dB/3级滤波GPS L1授时天线,适合长电缆通信基站授时天线。 替代PCTel (MaxRad) GPS-TMG-50N授时天线,同样性能,更轻、更低功耗、更低价格。 IP67和军标MIL-STD-801F Section 509.4;RoHS和REACH。

TW3150/TW3152 50dB、3级滤波GPS L1授时天线,适合长电缆通信基站授时天线。 替代PCTel (MaxRad) GPS-TMG-50N授时天线TW3150/TW3152 50dB、3级滤波GPS L1授时天线,适合长电缆通信基站授时天线。 替代PCTel (MaxRad) GPS-TMG-50N授时天线

 

 

 

 

 

 

VP6000 NGS、GEO++认证全能型天线

VP6000系列天线:

VP6000覆盖所有GNSS频率;
VP6300覆盖所以GNSS频率, 除了B3和E6;
VP6200覆盖L1/L2, G1/G2, B1/B2,和 E1 (加上L频段修正).

VP6200天线

VP6200天线替代Hemisphere A42、NovAtel GPS-702-GG等。VP6200天线,覆盖L1/L2, G1/G2, B1/B2,和 E1 (加上L频段修正).替代Hemisphere A42、NovAtel GPS-702-GG等。VP6200天线,覆盖L1/L2, G1/G2, B1/B2,和 E1 (加上L频段修正).替代Hemisphere A42、NovAtel GPS-702-GG等。

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  蓝色强调的部分表示是同组中最强性能。

VP6300天线

VP6300天线替代Hemisphere A42、NovAtel GPS-703-GG等。

VP6300天线与市场上其它天线比较、总体性能更佳,替代Hemisphere A42、NovAtel GPS-703-GG等。VP6300天线与市场上其它天线比较、总体性能更佳,替代Hemisphere A42、NovAtel GPS-703-GG等。

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

蓝色强调的部分表示是同组中最强性能。

VP6000天线

VP6000天线替代Leica AR20、NovAtel GPS-704WB、Trimble Zephyr 2等。

VP6000天线与其它天线比较、总体性能更佳,替代Leica AR20、NovAtel GPS-704WB、Trimble Zephyr 2等。VP6000天线与其它天线比较、总体性能更佳,替代Leica AR20、NovAtel GPS-704WB、Trimble Zephyr 2等。

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

蓝色强调的部分表示是同组中最强性能。

市面上几款典型的参考站天线,包括拓扑康PG-S1、诺瓦泰GPS-704WB、Javad TriAnt、Hemisphere A52、NavExperience 3G+C、华信CSX601A,压轴的是Tallysman的VP6000全能型天线,集中了强者和市场主流。你有更好选择吗?参照性能对照一览表,供参考。

市场上参考站天线比较、VP6000优胜,比拓扑康PG-S1、诺瓦泰GPS-704WB、Javad TriAnt、Hemisphere A52、NavExperience 3G+C、华信CSX601A更佳。市场上参考站天线比较、VP6000优胜,比拓扑康PG-S1、诺瓦泰GPS-704WB、Javad TriAnt、Hemisphere A52、NavExperience 3G+C、华信CSX601A更佳。

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

蓝色强调的部分表示是同组中最强性能

市面上几款典型的的大地测量天线,包括诺瓦泰GNSS750、天宝Zephyr 2、Ashtech ChokeRing(扼流圈天线)、拓扑康PN-A5、莱卡AR20、华信HX GG486A,压轴的是Tallysman的VP6000全能型天线,集中了强者和市场主流。你有更好选择吗?参照性能对照一览表,供参考。

VP6000与市面常见大地测量天线对比,性能优胜,比诺瓦泰GNSS750、天宝Zephyr 2、Ashtech ChokeRing(扼流圈天线)、拓扑康PN-A5、莱卡AR20、华信HX GG486A更佳。VP6000与市面常见大地测量天线对比,性能优胜,比诺瓦泰GNSS750、天宝Zephyr 2、Ashtech ChokeRing(扼流圈天线)、拓扑康PN-A5、莱卡AR20、华信HX GG486A更佳。

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

蓝色强调的部分表示是同组中最强性能。

阅读该条目的剩余部分 »

Case Study成功案例

发表 2015/11/23

AIT成功案例:自主任务型MAVs飞控、GNSS、RC控制ServoCenter™等

【摘要】GPS自主导航点跟踪已做到50厘米、500克微型飞行器(MAV),本文重点研究自主与环境互动,和更高水平的与操作者交互。

对下行传输图像进行图像分析,以估计海拔高度、对周围环境建电子地图和探测感兴趣的目标。对检测到的目标收集信息、下任务,并提交用户验证。此外各个层面进一步信息,从飞行高度到任务级别合并为单个智能地图,允许操作者选择交互级别。

由此系统可以非常容易地定义任务,例如搜索某个区域,非常精确判断视觉目标的位置,确定目标在某个位置。除了发射外,没有用户干预,任务自主完成。但是,微型飞行器执行任务过程中,例如只有较少的确定性情况下,如搜索任务中,操作者的帮助和用户的验证,可以加快搜索过程或增强演习难度。

MAV微型飞行器变得越来越重要,每个操作者控制的微型飞行器数量大大增加。为了实现这一目标,任务级别通信大大降低了操作者的认知工作量。与周边环境自主互动让MAVs微型飞行器群它们自己操作,而只在对提高任务性能有用时,操作者才介入。高精度导航GNSS模块、板卡,惯性导航模块,高增益天线、无源天线高精度导航GNSS模块、板卡,惯性导航模块,高增益天线、无源天线

 

 

 

 

 

 

 

 

 

 

 

 

伺服电机控制器ServoCenter系列,包括DIP、TQFP芯片,串口、USB口、MIDI口板卡伺服电机控制器ServoCenter系列,包括DIP、TQFP芯片,串口、USB口、MIDI口板卡

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(原载:Holiday50AV Technical Paper Christophe De Wagter, Matthijs Amelink Delft University of Technology & D-CIS Lab, Delft, The Netherlands September 4, 2007,编译:海和利)

 

AIT成功案例:峡谷无人机侦测

LOOKING AT系列三《LEWIS GRAHAM:充分利用无人机》,他的实验中使用板载技术来获取测绘级别定位信息。

LEWIS GRAHAM是GEOCUE总裁兼CTO,重度改装了DJI的筋斗云S900(采用A2飞控,基于NV08C-CSM导航模块)平台,以及TW3870 RTK天线带地平面、平头、灰黑。

NV08C-RTK板卡、TW3870天线NV08C-RTK板卡、TW3870天线

峡谷峡谷

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

我们的研究结果:

•您需要极高的精度测绘控制(〜2cm的或更好的范围)。

•动态后处理(PPK)节省实时处理时间,较低精度(两到三的一个因素)都行。

•天线有关 - 很多!计划为一个好的流动站天线投资最低US $500。

•虚拟参考站方案是另一大大节省时间计划。

(原载:GEOConnexion 2015年9月

参考英文原文http://aitcl.com/data/documents/Geoconnexion-Sept-2015.pdf,编译:海和利)

 

AIT成功案例:V2V、V2I    

DOT(美国交通部)、NHTSA(美国道路交通安全管理局)认为《V2V通信:V2V技术应用准备就绪》2014年8月 。
亚洲:日、韩走在开发、应用前列,都支持电子道路系统收费5.8Ghz频段,但日本丰田等车厂760Mhz、将支持双频段,中国还没决定频段;欧洲:有明确时间表2015年基于V2I应用,5.9Ghz频段。
VAD车辆感知设备、ASD后装安全设备,标准挺多的IEEE 802.11p - 2010 、IEEE 802.11an - 2012、ETSI ES 202 663、IEEE 1609 - 2010、ARIB STD - T109 - 2012、SAE J2735 - 2009;1GHz ARM Cortex-A9多核处理器;Linux 3.4操作系统;移动及多径容差:多普勒传播速度800Km/h、延时1500纳秒;GNSS定位精度1.5米。

 V2IV2I

 

 

 

 

 

 

 

 

 

 MK5-OBUMK5-OBU

     

 

 

 

 

参考《无人机市场浅析,兼NV08C、Spatial产品应用》、《无人驾驶,还有多远?》等。

 

编辑:海和利

阅读该条目的剩余部分 »

NGS天线---VP6000、TW3870

发表 2015/10/07

VP6000:北美著名研究型大学 阿尔伯塔大学(University of Alberta)悉心开发11年,与Tallysman合作推出全能型差分参考站与大地测量天线VP6000,填补了市场VP6000全能型参考站天线,NGS认证VP6000全能型参考站天线,NGS认证空缺。VeraPhase™专利技术,提供了极低的轴比、覆盖所有频率,包括GPS L1/L2/L5, GLONASS G1/G2/G3, Galileo E1/E2/E5a/E5b/E6, BeiDou B1/B2/B3, WAAS, EGNOS, QZSS, Gagan, TerraStar,OmniSTAR, StarFire所有频率(1164~1300 MHz and 1559~1610 MHz) plus L-Band correction services (1525~1559 MHz)。NGS认证。

NGS认证:http://www.ngs.noaa.gov/ANTCAL/LoadFile?file=TWIVP6000_NONE.atx。

The VP6000 covers all GNSS frequencies;

VP6300 covers all GNSS frequencies, except B3 and E6;

VP6200 provides coverage of L1/L2, G1/G2, B1/B2, and E1 (plus L-band correction).

 

TW3870:支持GPS L1/L2, GLONASS G1/G2, Galileo E1, BeiDou B1,和SBAS (WAAS, EGNOS & MSAS)所有频段的

TW3870多频GNSS天线,NGS认证TW3870多频GNSS天线,NGS认证GNSS天线,NGS认证。

著名的GeoCue公司应用实例,在崎岖峡谷、城市环境,小型无人机3D影像达到RTK精度。

GEOCUE appllied TW3870 for sUAVs maping mission for RTK grade positioning. See attached Case Sutdy-GeoConnexion Spet 2015-Where Are We?

IN THE THIRD OF HIS SERIES LOOKING AT GETTING THE MOST FROM UAVS, LEWIS GRAHAM REPORTS ON HIS EXPERIMENTS IN USING ON-BOARD TECHNOLOGIES TO OBTAIN SURVEY GRADE POSITIONING INFORMATION.

We provide custom tuning service for customer's housing and ground plane, to establish a "goldstandard". This "goldstandard" is kept on file and used to set the benchmark for every antenna we will build for the customer in the future. For example 5MHzhigher than the appropriate tuning.

NGS认证:http://www.ngs.noaa.gov/ANTCAL/LoadFile?file=TWI3870%2BGP_NONE.atx。

提供定制服务,按照客户设备外壳与地进行调谐最高可提高5Mhz,金码标准供货。

阅读该条目的剩余部分 »

NV08C系列产品问答

发表 2015/09/25

1. NV08C系列GNSS产品有哪些家族成员

目前我们有如下型号产品:
NV08C-CSM GPS/Glonass/BDS/Galileo/SBAS接收器模块
NV08C-RTK  GPS/Glonass/BDS/Galileo/SBAS实时动态差分卡
NV08C-RTK-A  GPS/Glonass/BDS/Galileo/SBAS实时动态差分及航向板卡NV08C-RTK-A实时动态差分及航向板卡NV08C-RTK-A实时动态差分及航向板卡

NV08C-RTK-M GPS/Glonass/BDS/Galileo/SBAS双频实时动态差分板卡,
NV08C-BRD GPS/Glonass/BDS/Galileo/SBAS接收器卡,

NV08C-MiniPCI-E  MiniPCI-E接口型 ,GPS/Glonass/BDS/Galileo/SBAS接收器卡

NV24M GPS/Glonass/BDS/Galileo/SBAS接收器卡 ,

CH-4706M GPS/Glonass/BDS/Galileo/SBAS接收器卡 ,

NV08C-MCM (停产),

NVS-STA GPS/Glonass/BDS/Galileo/SBAS授时接收器及天线 ,

NV08C-EVK-CSM  NV08C-CSM开发工具包 ,

NV08C-EVK-RTK   NV08C-RTK开发工具包


2. NV08C-CSM补充特点

2.1 NV08C-CSM能什么做高精度应用

NV08C-CSM支持RTCM SC104 v2.3,提供原始数据(伪距观测值,载波相位观测值,积分多普勒伪距值),其精度可以用来做伪距差分、DGNSS、RTK等高精度应用。如NV08C-RTK、NV08C-RTK-A即基于NV08C-CSM开发的实时动态差分板卡。

NV08C-CSM支持RTCMv2 messages #1 (GPS改正电文)和#31(GLONASS改正电文),自动解码做DGNSS差分。
NV08C-CSM可以作为伪距差分数据接收机使用。目前由于固件还不支持输出伪距差分数据的缘故,不能作为差分基准站用。
NV08C-CSM虽然只是支持L1单频,但差分、SBAS精度可达亚米。
NV08C-CSM提供原始数据可以转化为RINEX格式,或任何支持RINEX处理的软件工具。支持后处理。

NV08C-CSM v5.0及以后版本,可支持北斗、伽利略。

2.2 用户设置保存

NV08C-CSM v4x和NV08C-CSM v5x版本保存用户设置冷启动,避免断电后重新上电早先的设置丢失:

$POCFG,W - save config保存用户设置
$POCFG,E - erase config删除用户设置

2.3 设置GPGGA中经纬度小数点后的保留数据的位数
NV08C-CSM v5.0NV08C-CSM v5.0

NV08C-CSM NMEA协议P37: 4.9 PNVGNME – Set NMEA Communication Parameters
$PONME,x, x[,x][,x]*hh<CR><LF>
第一个x:Number of digits in fractional part of time output, permitted values 0 to 6     时间
第二个x:Number of digits in fractional part of position output, permitted values 1 to 6   位置

2.4 SBAS命令,参考通信协议 4.4 PKON1 – Set of Receiver Configuration

$PKON1,0,10,,,0000,A*68<CR><LF>
其中10表示GNSS+SBAS

2.5 DGNSS命令,参考通信协议 4.8 PONAV – Navigation Solution Parameters
$PONAV,3,05,01,12,30*5D<CR><LF>
Response: $PONAV,3,05,01,12,30*5D<CR><LF>
其中3表示RTCM SC-104和SBAS差分。

2.6 输入RTCM命令: 参考P41: 4.13 PORZA – COM Port Setting(NV08C Receivers Protocol Specification V1.4 ENG, May 2013)

$PORZA,x,x,x*hh<CR><LF>
第3个x:Protocol type:
0 – disable
1 – NMEA 0183
2 – RTCM-104 differential corrections reception
3 – BINR
4 – BINR2  

为了输入RTCM差分改正信息,串口2设定为2。

P36: 4.8 PONAV – Navigation Solution Parameters

$PONAV,х,хх,хх,xx,xxx*hh<CR><LF>

第1个x:DGNSS mode settings:

0 – RTCM SC-104 differential corrections only

1 – SBAS differential corrections only

2 – No differential corrections allowed

3 – Both RTCM SC-104 and SBAS differential corrections allowed

串口1 设定为0。

以上基于默认设置,串口1作为输出口、串口2输入RTCM。

通信协议 NMEA: NV08C_NMEA_Protocol_Specification_V1.4_ENG

2.7 设置支持Glonass、北斗、SBAS及组合

NV08C-CSM v5.1固件默认配置及可设置、可保存:

NV08C-CSM v5.1固件版本0504;
FW0504初始设置为GPS+GLONASS,但可以设置为GPS+北斗可保存于EEPROM中。

FW B504是最初配置的GPS +北斗模式,可以根据客户需求提供。

$PKON1,x,x,c-c,c-c,xxxx,a*hh<CR><LF>
第二个x:
GPS+GLONASS = 0
GPS+GLONASS+SBAS = 10
GPS+BDS = 20

BDS = 22

GPS+BDS+SBAS = 30
NV08C-CSM从v5.0版本开始,用户可以通过指令设置支持Glonass还是北斗,同时也可以设置支持SBAS;

只北斗命令为:
1.  NMEA $PKON1: 22
2.  BINR: 0Dh( Data Type=2)
2.8 北斗原始数据
二进制BINR协议F5h语句,可获得北斗原始数据观测量,即伪距观测值,载波相位观测值,积分多普勒伪距值。
 

3.NV08C-RTK、NV08C-RTK-A 补充特点

NV08C-RTK、NV08C-RTK-A能保存用户设置冷启动。
NV08C-RTK支持RTK(载波相位差分、实时动态差分)、RTD 、后处理,支持RTCM3.1、支持NMEA协议,有限支持二进制协议电文,不输出原始数据、DGNSS,不支持PPP(需要L1和L2)。 NV08C-RTK可以基站模式工作,为NV08C-CSM基站提供改正信息,做伪距差分。

NV08C-RTK支持 88h BINR电文定位数据:

52h BINR 电文可视卫星

93h BINR 电文使用卫星

70h BINR 电文固件版本。

NV08C-RTK、NV08C-RTK-A在下一版固件(Firmware)可望支持的二进制信息包括: 

卫星数、GPS星数、GLONASS星数,定位模式, 经纬度及海拔信息、三个维度的定位精度,水平速度及其方向和精度(或东向和北向速度),垂直速度和精度,航向(heading or yaw)以及航向精度(双天线时有效),差分状态和DIFF AGE。这些信息是直接与飞行控制相关的参数,对无人机采用二进制及时处理数据很有帮助。

NV08C-RTK板含有INS功能,能提供当前横滚(Roll)、仰俯(Pitch)和航向(Heading,Yaw)角度(GNSS信号失去瞬间),但不适合外推、长时间工作。

GNSS航向在3D定位后10秒提供,仰俯由GNSS或MEMS提供,当前横滚只由MEMS提供。

3D模式假设为绝对误差。DGNSS和RTK是相对模式。换句话说DGNSS和RTK最后的绝对精度取决于基站定位精度。3D模式是绝对精度,DGNSS/RTK模式是相对精度。

NV08C-RTK有内部UART转化USB芯片。NV08C-RTK通过20针电源及数字接口与主机相连,如果用电脑USB通信端口简便测试,需要Pins转USB线,Pin 1、2 - PWR, Pin 10 - GND, Pin 3 - USB_N, Pin 4 - USB_P,转接线Pin(母)接板卡、USB接电脑。

NV08C-RTK实时动态差分板卡,低成本、替代NovAtelNV08C-RTK实时动态差分板卡,低成本、替代NovAtel

 

 

 

 

 

 

 

 

 

NV08C-RTK-A,除了NV08C-RTK实时动态差分功能,还支持双天线航向应用。 航向无需基站或参考信息源支持。其中1#主天线提供位置、用于Rover或Base,2#次天线提供航向。

应用如GPS罗经、无人机飞行控制、农业机械自动驾驶、协同作业机械控制等。

NV08C-RTK、NV089C-RTK-A真北向速度命令:PNVGVOG。

$PNVGVOG,hhmmss.s-s,х.x,х.x,х.x,a*hh<CR><LF>

3 hhmmss.s-s  Time of position fix
4 x.x                Latitude velocity, m/s
5 x.x                Longitude velocity, m/s
6 x.x                Height velocity, m/s
7 a                   Mode Indicator:
A = Autonomous mode
D = Differential mode
F = Float RTK
R = Real Time Kinematic
E = Estimated (dead reckoning) mode
N = Data not valid

NV08C-RTK的设置

0F<CR><LF>

 

NV08C-RTK-A定向指令:$GPHDT真航向

 

4.NV08C-BRD补充特点
NV08C-BRD支持原始数据(伪距观测值,载波相位观测值,积分多普勒伪距值)输出、后处理等。类似于NV08C-CSM。NV08C-BRD没有内部UART转化USB芯片,实际上是NV08C-CSM在板上。如果用电脑USB通信端口简便测试,需要TTL(+3.3V)转USB线。

自由设置支持Glonass、北斗、SBAS及组合:

$PKON1,x,x,c-c,c-c,xxxx,a*hh<CR><LF>
第二个x:
GPS+GLONASS = 0
GPS+GLONASS+SBAS = 10
GPS+Beidou = 20
GPS+Beidou+SBAS = 30
NV08C-CSM从v5.0版本开始,用户可以通过指令设置支持Glonass还是北斗,同时也可以设置支持SBAS。


NV08C-BRDNV08C-BRD
5.NV08C-MiniCPI-E补充特点
NV08C-MiniPCI-E支持BINR二进制和原始数据输出,不提供后处理软件工具。只有一个通信端口NMEA+RTCM混合在一个通信端口,这样支持DGNSS。另外,使用BINR二进制message69H发送RTCM数据到NV08C,能自动使用NMEA和发送RTCM,以致一个数通信口输出NMEA和输入RTCM
NV08C-MiniPCI-ENV08C-MiniPCI-E

6. NV08C支持支持实时PPP(单点精密定位)吗?
 
实时PPP(单点精密定位)需要L1和L2,因为NV08C支持L1,所以不能做PPP。


7. L1/L2与L1到底有什么不同?

NV08C-RTK、NV08C-RTK-A、NV08C-RTK-M对照表NV08C-RTK、NV08C-RTK-A、NV08C-RTK-M对照表

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L1L2允许在不使用电离层高精度模型来补偿电离层误差(消除了电离层误差)。L1测量需要使用电离层高精度模型较好地补偿误差(无法消除电离层误差)。但如果采用的CORS虚拟参考站已经消除电离层误差,如台湾国土部门CORS站,RTK L1板卡与RTK L1/L2就几乎没有差别。

L1/L2接收机支持实时PPP(单点精密定位 ),L1接收机支持后处理。

NV08C-RTKL1单频GNSS板卡性能不亚于双频板卡,能经济地满足一般实时差分需要。

得益于NV08C-CSM提供高质量的原始数据和先进的RTK算法,解算可靠、输出RTK精度高。GPS、Glonass足够多卫星,良好环境下丢星几乎不会发生。NV08C-RTK可以替代部分双频RTK板卡。

NV08C-RTK作业距离10公里为限,要求严格的大地测量精度时需要优质的双频/多频GNSS板卡,后者大致30公里作业半径。

用过市面上L1单频RTK板卡,遇到丢星、精度低等不佳体验,源于其GNSS模块或FPGA板卡提供的原始数据质量差、不可靠,加上RTK算法上的缺陷、低稳定性。NV08C-RTK完全可以替代部分双频RTK板卡。

 

NV08C-RTK虽然是L1/G1单频RTK板卡,但由于NV08C-CSM模块支持码群延(或称绝对测距误差)修正,载波相位的超前(或称相对测距误差)修正,多普勒频移(或称距速误差)修正等,实际上适合多数高精度应用要求,如测量、GIS、无人机UAV、机械控制和精准农业等。工程师不建议NV08C-RTK应用于用户站离基站超过10公里的场合。

NV08C-RTK-M为支持L1/L2、G1/G2、B1/B2双频板卡即将上市,换句话说作业半径30公里。

在GPS观测量中包含了卫星和接收机的钟差、大气传播延迟、多路径效应等误差,在定位计算时还要受到卫星广播星历误差的影响,在进行相对定位时大部分公共误差被抵消或削弱,因此定位精度将大大提高,双频接收机可以根据两个频率的观测量抵消大气中电离层误差的主要部分,在精度要求高,接收机间距离较远时(大气有明显差别),应选用双频接收机。
电离层误差是GPS测量中的主要误差,是限制单频GPS接收机的测程不能超过20km的决定因素。电离层对GPS测量的主要影响有七种:信号调制的码群延(或称绝对测距误差),载波相位的超前(或称相对测距误差),多普勒频移(或称距速误差),电离折射同高度角的关系,振幅闪烁,磁暴对GPS的影响,电离层对差分GPS的影响。电离层特性高出地球表面50—1000km的大气层称为电离层。电离层是一种微弱的电离气体,它能以各种方式影响电波传播。
过去多频GPS接收机比单频GPS接收机具有更高的信号捕获灵敏度、更强的抗干扰性能和更高的定位精度,但三频GPS接收机相比于双频GPS接收机却没有太大的优势,因为双频GPS接收机已能实现电离层误差的精确补偿,且三频GPS接收机在抗干扰方面没有太大的提高。
现在,因为NV08C-CSM及NV08C-RTK等都是真正多星系同时工作。有足够多的卫星供捕获、足够强的信号供定位,越来越多开发者用来替代双频、多频板卡。今后,随着CORS站、虚拟参考站的普及与平民化,如向公众开放高精度差分广播,NV08C-RTK的优势将更加明显。在目前阶段,不得不说长达几千公里的精密定位还是要用双频或多频板卡。
NV08C-RTK-M为双频RTK板卡。

8.有没有实际高精度测试数据可参考?
我们进行了很多高精度测试,如NV08C-RTK、NV08C-RTK-A,后者包含定向、航向。
如下是来自某航空摄影客户测试NV08C-RTK的数据:                                                              

NV08C-RTK实时动态差分误差及分布图NV08C-RTK实时动态差分误差及分布图                                                                                            

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

最上面是3D浮点精度,依次是纬度误差,经度误差,高程误差

  图中纵坐标1小格是1mm误差,纬度、经度误差-1~+1mm,高程误差-3~+2mm(极大部分点落在此区域)

NV08C-RTK纬度误差分布图NV08C-RTK纬度误差分布图

  

 

 

NV08C-RTK经度误差分布图NV08C-RTK经度误差分布图
                            

                

         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

自上至下纬度误差分布图、经度误差分布图、高程误差分布图

         图中横坐标1小格是1mm误差,纬度、经度误差-1~+1mm,高程误差-3~+2mm(极大部分点落在此区域)NV08C-RTK输出动态实时差分,准确度<1cmNV08C-RTK输出动态实时差分,准确度<1cm

NV08C-RTK实时动态差分轨迹图走P字NV08C-RTK实时动态差分轨迹图走P字

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9. DGNSS与RTK

虽然同样依赖2台接收机工作,DGNSS差分与RTK实时动态差分(又称载波相位差分)还是不同。

DGNSS系统,举例一台高性能接收机(如NV08C-RTK,基站),一台NV08C-CSM接收机(流动站),NV08C-CSM接收到基站发出的RTCMv2.x电文messages #1和#31。

RTCMv2.x并不使用基站坐标。

message #1为所有可视GPS卫星改正电文。

message #31为所有可视Glonass卫星改正电文。

DGNSS system, RTCMv2.x messages #1 and #31

RTCMv2.x does not need to use base coordinates

message #1 is corrections for all visible GPS SVs

message #31 is corrections for all visible GLONASS SVs

RTK系统,流动站接收基站发出的RTCMv3.x电文,RTCMv3.x电文包含原始数据,流动端需要基站坐标计算、改正原始数据。

GPS & GLONASS改正信息(RTCMv2.x) ,或者是GPS & GLONASS原始数据+ 基站坐标(RTCMv3.x) 都能提高精度。

基站坐标输入两条命令即可$PNVGRTL,BASEXYZ或$PNVGRTL,BASEBLH。

原始数据或当前可视卫星的改正信息是DGNSS或RTK观测的主要部分,基站坐标数据对RTK是必要的但并不足够,主要改正源仍然是观测基站可视卫星的原始数据。

Base transmits RTCM messages 1002, 1006, 1010

1006 is message with Base coordinates

1002 - raw data for GPS

1010 - raw data for GLONASS

all these messages are necessary for RTK

1006 message only is not enough.

RTCMv3.x contains raw data and therefore needs base coordinates to calculate raw data corrections on Rover side,

but raw data or corrections for currently visible SVs is the main part of DGNSS or RTK method, base coordinates are just necessary information but not all, the main correction source here is raw data from visible SVs which are measured at Base Station side.

附:RTCM现有不同版本(括号内容表示变化)
RTCM 2.0 :仅用于DGPS (Code Correction-->DGPS)

RTCM 2.1 : 添加载波相位数据和RTK修正数据 (Code+Phase Correction-->RTK )

RTCM 2.2 : 包括了GLONASS 数据和相关信息 (...+Glonass)

RTCM 2.3 : 增加antenna types (message 23) ARP information (message 24) (...+GPS Antenna Definition)

RTCM 3.0 : RTCM 2.3 requires 4800 bps to broadcast dual-frequency code and carrier-phase observation corrections of 12 satellites. The information content is send with 1800 bps in RTCM 3.0 。增加了新的GNSS系统 (...+ Network RTK & GNSS)

GPS RTK Observations 

1001  GPS L1 observations
1002  GPS L1 observations, extended information 1)
1003  GPS L1+L2 observations
1004  GPS L1+L2 observations, extended information 1)
1) Extended information contains Signal-to-Noise (CNO) and full milliseconds for code observations.

Stationary Antenna Reference Point

1005   ARP station coordinates, ECEF XYZ
1006   ARP station coordinates, ECEF XYZ and extended information 2)
2) Extended information contains the antenna height.

Antenna Description

1007    antenna type
1008    antenna type, extended information 3)
3) Extended information contains the antenna serial number.

GLONASS Observations

1009    GLONASS L1 observations
1010    GLONASS L1 observations, extended information 4)
1011    GLONASS L1+L2 observations
1012    GLONASS L1+L2 observations, extended information 4)
4) Extended information contains Signal-to-Noise (CNO) and full milliseconds for code observations.

System Parameters

1013     system parameters, list of transmitted message types and update rates

RTCM 3.1 

Network Message

1014    Network Auxiliary Station Data
coordinate difference between one Aux station and the master station
1015    GPS Ionospheric Correction Differences for all satellites between one Aux station and the master station
1016    GPS Geometric Correction Differences for all satellites between one Aux station and the master station
1017    GPS Combined Geometric and Ionospheric Correction Differences for all satellites between one Aux station and the master station
(same content as both types 1015 and 1016 together, but less size)
1018    RESERVED for Alternative Ionospheric Correction Difference Message.Message type 1018 is not yet defined.

Ephemeris Data

1019    GPS Ephemeris
1020    GLONASS Ephemeris

UTF8 Text Message

1029   Text in UTF8 format (max. 127 multibyte characters and max. 255 bytes)

RTCM 3.1 Addendum 1

Transformation Message

1021    Helmert / Abridged Molodenski Transformation
1022    Molodenski-Badekas Transformation
1023   Transformation Residual Message, ellipsoidal grid representation
1024   Transformation Residual Message, plane grid representation
1025   Projection types except LCC2SP, OM
1026   Projection type Lambert Conic Conformal (LCC2SP)
1027   Projection type Oblique Mercator (OM)
1028   RESERVED for Global to Plate Fixed Transformation(Message type 1028 is not yet defined.)

RTCM 3.1 Addendum 2

Network Residuals Messages

1030   GPS Network Residuals
1031   GLONASS Network Residuals

ARP Message for VRS

1032    ARP station coordinates, ECEF XYZ of real reference station

Receiver and Antenna Descriptor

1033    Receiver and Antenna Descriptor

RTCM 3.1 Further Addendums

Further message types proposed for the next future are FKP for GPS and GLONASS, and MAC for GLONASS.

Network FKP Messages

1034   GPS FKP
1035   GLONASS FKP

 

10.NV08C-RTK相对坐标还是绝对坐标,以及不能

NV08C-RTK支持PPK(实时后处理)。NV08C-RTK支持输出二进制原始数据(raw data),能转换为RINEX,需要带RTK引擎后处理软件工具,如RTKlib,参考www.rtklib.com

以虚拟参考VRS、CORS站作基站,由于输入的准确度很高的基站位置坐标,NV08C-RTK流动站输出的位置坐标为绝对坐标。一对NV08C-RTK分别作为基站、流动站工作,后者输出的只是相对坐标。

囿于内部结构及运算机制局限,NV08C-RTK不适合要求延时非常小(如小于10毫秒)的场合,NovAtel CPT也不能!此时,需要用到其它惯性导航模块,如Spatial延时(Latency)仅仅0.4毫秒。

NV08C-RTK延时50毫秒(目前FW)。延时取决于电路设计。从NV08C-CSM获取数据计算新位置需要时间,数据交换大约20-30毫秒。

 

11.北斗原始数据、差分

0xF4 : 二进制包含原始数据请求指令;
0xF5 : 原始数据包括所有跟踪到的卫星;
 
包含原始数据观测值:伪距、载波相位、多普勒和信噪比。数据大小【28+30*所用通道数)】比特.

0xF5原始数据格式(二进制协议)0xF5原始数据格式(二进制协议)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 - 该电文仅包含接收卫星的测量结果

2 - 信号类型由掩码决定:

0x01 - GLONASS

0x02 - GPS

0x04 - SBAS

0x08 - 伽利略

0x09 - 北斗

3 - 测量标志由掩码确定:

0x01 - 信号(跟踪)

0x02 - 毫秒伪距/多普勒频率测量

0x04 - 伪距测量平滑

0x08 - 载波相位测量

0x10 - 信号时间可用(完全伪距)

0x20 - 未检测到前导码(载波相位的半周期模糊度)。

我国多项北斗国际标准提案,已被国际海事无线电技术委员会RTCM第104专业委员会(RTCM SC-104)接受。随着北斗进入RTCM、NMEA、IGS、NGS等国际系列标准,北斗的作用、威力将大大增强。但目前相比Glonass进入RTCM3.1标准,北斗做得远远不够。

NV08C-CSM默认串口2为BINR,需要设置为RTCM,支持RTCM v2.x messages #1与 #31.  
Message #1 是GPS corrections, message #31是GLONASS corrections。由于北斗差分相关信息没有公开,目前固件(Firmware)不支持北斗RTCM,待将来升级FW可以完全支持GPS、北斗差分RTCM,目前版本只支持GPS差分RTCM v2.x messages #1、Glonass差分RTCM message #31。
NV08C-CSM v5.x支持 北斗RTCM。
 
12.NV08C-RTK设置

出厂默认设置

NV08C-RTK UART1口预设为NMEA, 115200 bps:

输出电文/数据率: GGA/1, RMC/1, GSV/1, GSA/1, RZD/1, GBS/10 (详情参考 NV08C Receivers NMEA Protocol Specification)

NV08C-RTK UART 2口预设BINR, 115200 bps。

BINR协议通信在用户请求下才输出电文 (详情参考NV08C Receivers BINR Protocol Specification)。

NMEA协议通讯UART口必须设置为1 start - 8data - 1 stop。BINR协议UART口必须设置为1 start - 8data - 1 odd parity - 1 stop.

NV08C-RTK GNSS板卡其它默认设置:

 导航模式: GPS和GLONASS

 RTCM数据: 自动输出 (DGNSS或RTK模式)

 SBAS数据: 请求下输出 ($PONAV NMEA command)

 RAIM: 自动

 辅助导航数据: 自动输出

 导航数据更新率: 1 Hz

 NMEA电文: 参考协议文档NV08C Receivers NMEA Protocol Specification

UART2初始设置为RTCMv3 115200 bps.

NV08C-RTK移动UART2接收RTCM数据,基站UART2发出RTCM 数据;

NV08C-RTK基站,置于Base Mode即可自动发出改正信息; NV08C-RTK移动站,置于Rover Mode即可自动接收基站改正信息。

基站与移动站设置语句:

$PNVGRTK,MODE,x NMEA message (see also NV08C-RTK NMEA Protocol Specification):

$PNVGRTK,MODE,2    message turns NV08C-RTK to RTK-Rover mode(by default).出厂默认设置为移动站;

$PNVGRTK,MODE,1    message turns NV08C-RTK to Base mode.设置为基站;

$PNVGRTK,MODE,3    message turns NV08C-RTK to Base mode with antenna position averaging.基站工作模式,取天线相位中心位置平均值。

$PNVGRTK,MODE,0    message turns NV08C-RTK to Autonomous mode.设置为自主工作接收机。

Base setting message基站设置指令:
$PNVGRTK,MODE,3,AVGTIME,N
where N is length of antenna averaging interval in minutes, N = 1~1440,即1分钟到24小时;

举例:基站设置1分钟天线位置平均值,语句为$PNVGRTK,MODE,3,AVGTIME,1。

 

检查基站设置是否成功语句:

$PNVGRTK,MODE,BASEXYZ*0F<CR><LF>

如果NV08C-RTK回复MODE=1和非0基站坐标,即为基站设置成功。

 

小贴士:1.NMEA语句只有合法字符、没有空格,字符与字符之间要么挨着、要么用逗号(,)分隔;

              2.注意字符半角与全角,认半角;

              3.$PNVGRTK,MODE,3,AVGTIME,N默认的取天线位置值时间是30分钟,如果仅仅是测试目的,可以设置时间为1、2、3分钟,即

                 N=1或2或3。

 

保存用户设置与恢复出厂默认设置:(4.8 PNVGCFG – Save/Erase RTK Engine and Communication Ports settings)

saving of the current RTK Engine and communication ports settings to FLASH memory and erasing of the previously saved settings (restore default settings).

$PNVGCFG,x*hh <CR><LF>

Saving / erasing of settings: X=

W – save (write) settings to FLASH保存用户设置到闪存中

E – erase (restore default settings)清除用户设置、恢复到出厂默认设置

R – erase and restart清除用户设置、重新启动

 

串口设置(4.4 PNVGRZA – COM Port Setting)

the receiver COM port settings: protocol NMEA/RTCM and baud rate

$PNVGRZA,x,x,x*hh<CR><LF>

第一个x, COM port number to be set:

0 – current port

1 – COM1 (UART 1)

2 – COM2 (UART 2)

3 – USB

第二个x, Port baud rate, in bauds from 4,800 to 460,800

第三个x, Protocol type:

0 – disable

1 – NMEA 0183

7 – RTCM

设置列表或清除设置PNVGRZB – Extended Query Message

sets a list of transmitted NMEA messages and output rates for the messages, or clears the earlier preset list.

Message Format to clear the list of transmitted messages:

$PNVGRZB*hh<CR><LF>

Message Format to add messages to be transmitted to the list:

$PNVGRZB[,PORT,х],c-c,x[,с-c,х…]*hh<CR><LF

[PORT,x] x: defines the port number for the following settings

0 – current port; 1 – UART 1; 2 – UART 2; 3 – USB

Note – The field is optional and can be omitted. If the field is omitted the setting are related to the current port

c-c:  Addresses of the required messages (3 last characters for standard messages and all address field characters or 3 last characters for proprietary messages)

X: Message output rate in PVT update intervals

Note: PVT update interval (in sec) is a value opposite to PVT update rate (in Hz) (see Message 4.12 PNVGRTK – Setting of RTK Engine parameters )

Setting the output rate to 1 will request messages to output every time a new PVT is calculated. Setting the output rate to N will request messages to output one time after N times of PVT calculation.

[,с-c,х…]When several messages are to be added to the list then the Fields 3 and 4 should be set for each of requested messages

13.NV08C-RTK-A设置

主要设置指令:

1.$PNVGRTK,MODE,4 启动定向,自动输出BLS基线状况及航向。

2.$PNVGRZB,HDT 请求HDT真航向, $GPHDT语句包含在RTK NMEA协议($GPHDT - Heading,True),RTK FW0027版固件开始支持。

3.$PNVGRZB,BLS 请求基线状况及定向参数,包括固定解UTC时间、基于基线的北向、基于基线的东向、基线长度(计算两个天线中心相位长度)、基线与北向的角度、基线与水平的角度、工作模式等。

 

RTK FW0027固件简要:

NV08C-RTK-A默认RTK+航向工作模式;支持TimeMark EVENT;增加 HDT(真航向), SDP(位置标准方差), SDV(速度标准方差), SDH(航向标准方差), RZD(坐标方差2D RMS), TME(时间周标记事件), TMU(国际时间标记事件), TMC(GPS锁定时间标记事件), VOG(对地速度)输出...
注意:IMU得到偏航Yaw基于PCB板卡、对地速度VOG,而双天线得到航向Heading基于天线相位中心基线。
 
作者:AIT
阅读该条目的剩余部分 »